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ABSTRACT 

Let G(n,k) denote the space (with the compact-open topology) of homeomor- 
phisms of R n which are fixed on R k. Theorem I : G(n, n -- 2) deforms in G(n, O) 
to O(2), where 0(2) is the orthogonal group. Corollary 2: (for n=2) the Kneser 
theorems. Corollary 3: A Euclidean R n bundle ~n over S~(m <= o0) which 
contains an R n-2 subbundle ~n-2 is isomorphic, as a G(n,O) bundle, to a 
Whitney sum ~n-2t~ ~2. Corollary 4: (n--2) stable homeomorphisms ofR n 
or S n ate (n-- 1) stable, hence stable if orientation preserving. 

Let  G(n, k) denote the space (with the compact-open topology) of  homeomor-  

phisms of  R ' ,  which are pointwise fixed on R k. We prove the following theorem. 

Trl~Ol~M 1. G(n, n - 2 )  deforms in G(n,O) to 0(2), where 0(2) is the orthog- 

onal  group. 

COROLLARY 2. The  Kneser theorems [41 or [6] f o r  n = 2 .  

COROLLARY 3. A Eucl idean R n bundle ~n over Sm(m < oo) which contains 

an R n-2 subbundle  ~ - 2  is isomorphic, as a G(n, O) bundle, to a Whi tney  sum 
~,-2 ~ ~2. 

COROLLARY 4. (n--2)  stable homeomorphisms  o f  R n or S n are ( n - l )  stable, 

hence stable i f  orientation preserving. 

Corollary 4 has been given by Cernavskii I l l  for n ~ 4. 

1. Definitions and preliminaries 

R n will denote Euclidean n-space; R k r-- R n is identified with R k x {0} = R k 

x R " -k  = R n. The ball of  radius r in R ~, centered at x ,  is denoted by B~(x).  

t Part of this work represents a portion of the author's Ph.D. thesis at the University of 
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If x = 0 it is usually omitted. S ~ will denote the unit circle in the plane. G = G(n) 
denotes the space (with the compact-open topology) of homeomorphisms of R" . 

C,(n, k)denotes the subspace of those homeomorphisms which are pointwise 

fixed on R k. 0(2) (SO(2)) will denote the (special) orthogonal group, identified 

with idla,_ 2 x 0(2) in G(n, n - 2 ) .  A basis for the neighborhoods of the identity 

(id) in G consists of sets of the form N(C, e) = {h [ [ h(x) - x I < e all x e C}, 

where e > 0, C is compact in R ~ , and [ �9 ] denotes the usual norm. It is well known 

that G is a topological transformation group on R ~, and compositions, inverses, 

and evaluations are continuous. This will be used without further mention in 

all proofs. We shall occasionally consider functions from R k to R m, which we give 

the compact open topology. For f ,  g: R k .-* R",  we define 

d(f, g) on A - - s u p { l f ( x ) - 9 ( x ) [  ]x~A} for A c R  k. 

An isotopy h, of h e G is a path in (3 starting at h. We say that an isotopy h,, 

for each h e A = G is canonical if the function from A x I into G defined by 

(h, 0 ~ ht is continuous, that is, defines a deformation of A in G. Let d denote 

the integers; A/B the complement of B in A. We make further definitions as 

we need them. 

2. Some useful leamas 

It will be convenient to denote points in R" by either rectangular 

((z, rl,  r2) e R "-2 x R x R) or cylindrical ((z, r, 0) e R "-2 x [0, 00) x S 1) coor- 

dinates. For ease of notation we choose a homemorphism #: [ -  o% ~ )  --, [0, 00), 

fixed for r > �89 Under this correspondence we may take our cylindrical coordi- 

nates in R ~-2 x [ -  0% 00) x S 1 or, or course in R ~-2 x [0, oo) x S ~ . 

For our first lemma we use the following notation. If  f :  R " - 2 ~  [ - 0 %  oo) 

is continuous, by C:  we mean the set {(z, r, 0) ] r < f(z)}.  I f  f is the constant 
2 function f(z)  = r ,  we simply write C,. We note that C, = R ~-2 x B~t,~. If 

./'1 < f2,  f3 < f4,  by Tt = T~(fl ; f2; f3; f4) we mean the homeomorphism of R" , 

fixed on C:, and off Cy,, which takes the ray {z} x [ -  o% 00) x {0} = [ -  0% 00) 

onto itself as follows: Tt is fixed on [ -  0% ft(z)] and [f4(z), 00), taking 

[ft(z),f2(z)] linearly onto [f l (z) , ( l - t ) f2(z)+ tf3(z)] and [f2(z)f4(z)] linearly 

onto [ ( 1 - t ) f 2 ( z ) +  tf3(z),f4(z)]. It is readily seen that Tt is continuous in t and 

f~, and that it defines an isotopy (of the identity) in G(n, n -2 ) .  Let nl and n2 

denote projections (in cylindrical coordinates) of R ~ on R "-~ and [ -  0% 00) or 

I0, oo), depending on how we are taking the radial coordinate. 
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LEMMA 5. Let h ~ G ( n , n - 2 ) .  Then h is canonically isotopic in G(n ,n -2)  

to h4, with d(nl o h4,nt) < 2 on R ~ and C4j-1 c h 4 ( C 4 j ) c  C4j+I for all j E J .  

Furthermore, if h ~ 0(2), then h t = h. 

2 PROOF. Let ~b(z) = min[0;sup{r I h(B~-2(z) x B~c,, ) c B~-2(z) x B~o~} ] . Set 

h t = T t ( -  oo;tk;0;1 ) o h o T t - l ( - ~ ;  ~b; 0; 1). Then d(n I o h 1 o rq) < 1 on C O . 

h I is now canonically isotoped to h 4 in three steps. 

Step 1. For each i = - 1 , 0 , 1 , 2 , 3 , . . .  we define 21: R n-2 --+ R as follows: Set 

2 o = 0,2_x(z) = max[ i ;  sup(zr2 o hl(z',O,O)l [ z ' - z  l < 1}]. 

By induction define: 

22,+1(z) = m i n [ - 1  + 22,(z); inf(,~2 o h~(z',22,(z'),O)[ I z - z ,  I =< 1}] 

22,+2(z) = r a i n [ -  1 + 22,+1(z); inf{n2 o h;~(z',,12,+~(z'),O)l I z , - z  l< 1}]. 

Thus 1 + 2t+I < hi, with Cx2j+ ~ ~ h1(C~2~)~ Ca,~_~ for j < 0. 

Let ~'t be the isotopy (of the identity) in G(n, n - 2 )  which takes the ray 

{z} x [ -  ~ ,  oo) x {0} = [ -  o% oo) onto itself. ~O, is the identity on [1 + 4_ l(z), oo), 

it takes { - i} to {(1 - t) ( - i) + t2~(z)) and it is linear on the segments [ -  (i + 1) - 1] 

and [1, 1 + 2_l(z)] .  By the choice of2i ,  @t varies continuously with ht and the 

isotopy hl+t = ~bt-Xohxofft is canonical. Furthermore d(n~h2, r r t ) <  1 on 

Co, with C2j-1 c h2(C2j)= C2j+1. If hi cO(2) then @t = id and hi+ t = hi. 

Step 2. We canonically isotope h2 to ha by the method described in [2, 

page 85]. Specifically we define ~1, fl, and 61 e G(n ,n -2)  by 

oq(z,r,O) = (z, r - 4 , 0 )  for r < - 7  

= (z,r ,0) for r >  - 6 ,  

and takes {z} x [ - 7 , - 6 ]  x {0} linearly onto {z} x [ - 1 1 , - 6 ]  x {0}. 

fl(z, r, O) = (z, r -  4, O) 

61(z,r,O) = ( z , r + 4 , 0 )  f o r r  < - 7  

= (z, r,0) for r > - 2 ,  and takes 

{z} x [ - 7 , - 2 ]  x {0} linearly onto {z} x [ - 3 , - 2 ]  x {0}. Let a,(6,) be the 

natural isotopies from the identity to ~q(fx). Set h~ +, = (fl o h2)o 6 t o (fl o h2)-1 o a t  

oh2. This isotopy slides the cylinders h2(~-a) near 0_12 , along the natural 

{z} x [ -  o% oo) x {0} fibers, keeping hz(~'_4) fixed. (Here ( - )  means boundary.) 

It then slides ~1 o h2(~-a) back along the fibers provided by fl o h2 until h~(d'_s) 

agrees with h~(d:_4)= h2(~-4).  We note that h~+t = hz off C-4 ,  with 
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h~ofll'C_=floh~16_ .. Since the isotopy h~+t # h2 for h2eO(2) ,  we modify it 

by setting h2+t = (id~)-lh2+t. Then ha = h~ and (since the ~,,5,,fl commute 

with h e 0(2)), h2+t = hz if h2 e 0(2). Furthermore, since the image of the fibers 

( { z } x R  z) n C o  under h2 and floh2 are within 1 of { z } x R  2, we have that 

d(nzoha, rq) < 2 on C-4 .  We also have C4j-1 c h3(C4j)c C4s+1 f o r j  < - 1 .  

Step 3. We define h 4 e G ( n , n - 2 )  by h41c_ , = h31c_ , and 

h41c,,_,/c~_ = fl-koh3 flk o I C~-4]C,~-s"  

Then ha maps each annulus Ck_4/Ck_ s the same way that h 3 mapped 

C - J C - 8 .  ha is canonically isotopic to h4 (since they agree on C-4) and h4 

satisfies the conclusion of the lemma. End of proof. 

The following two lemmas are given in [4] for n = 2. Since the proofs are 

identical, they are not given here. However, we emphasize that the space of all 

bounded homeomorphisms of R" is not contractible, that is, that the M in Lemmas 

6 and 7 is necessarily fixed, (refer to [4]). 

LEMbIA 6. Let M > 0 be given and let h e G(n) be bounded by M,  that is 

d(h, id) < M on R". Then h is canonically isotopic to the identity. Further- 

more, if  h = id, then h t = id. 

LEMMA 7. Let M > 0 be given and let h e G(n) preserve orientation with 

d(lr o h, zr) <- M on R ~, where zr:R ~ ~ R ~-1 denotes projection on R " - t .  Then 

h is canonically isotopic to the identity. Furthermore if h = id, then h t = id. 

For the next lemma we consider a covering map 2:R" -* Rn/R n-2 defined as 

follows. Let e: R - *  S t be the standard exponential covering map. We define 

2 ' : R " = R " - 2 x R x R  - ,  Rn -2x (O ,  oo) x S  z = R " / R  "-z by 2'(z, rz, r2) = 

(z, It(ri) , e(r2)), the domain (range) given in rectangular (cylindrical) coordinates. 

Here /~: R - ~  (0, o0) is the homeomorphism defined in the remarks preceding 

Lemma 5. Thus 2' wraps the strips R "-2 x [rt,  r2] x R around the thickened 
�9 2 annuli R n-2 x (Bu~,JmtB~, , j ) .  We note that 2' fixes the half line {0} x [�89 oo) 

x {0} , and that rc = ( rqo2 ' ,p- lorC2o2' ) ,  where rrt,rc 2 and rc are the projec- 

tions of R" on R"- 2, (0, co), and R"- z given in Lemma 7 and the remarks preceding 

Lemma 5.2 is now taken to be an approximation to 2' which equals 2' off a small 

compact neighborhood of Xo = (0, 1,0), and which is the identity on a smaller 

compact neighborhood N of Xo. 

LEMMA 8. Let h e G(n, n - 2 ) f i x  Xo = (0, 1,0). Then hlR.,:~,,-2 lifts (uniquely) 

to he  G(n), with ~(xo) = x o. Furthermore h is canonically isotopic to ~. 
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PROOF. By standard covering space theory h uniquely exists. By the definition 

of 2, we have that h = h on a neighborhood of x0, in fact on the component 

of N n h-I(N) containing x0. That h is canonically isotopic to h now follows 

from the continuity of h ~ /~ ,  the continuity of the function h ~ rad N n h -  ~(N) 

= sup{r I B,"(Xo) c N n h-  1 (N)}, and the following basic observation which is 

stated without proof as Lemma 9. 

LEMMA 9. I f  A c G(n) is such that for every h ~ A we have 

(i) h = id on a compact neighborhood N h of x o and 

(ii) h ~ rad(N h) is continuous, 

then h is canonically isotopic to the identity. Furthermore if h = id, then 

h t = id. 

We give the isotopy as follows. Let ~b t e G(n,O) for 0 =< t < 1 be defined by 

tkt(x) = ( 1 -  t)x. Let z be translation by Xo. Then 

h t = "Co~-lo( ' r  -1,  for t < l  

= id, for t =  1. 

3. Proof of  Theorem 1 

Let h ~ G(n, n - 2 )  be given. W.l.o.g. assume that h preserves orientation. It 

suffices to give a canonical isotopy, in G(n, 0), of h into SO(2). By Lemma 5, 

h is canonically isotopic to h i ,  with hi as h4 in the conclusion of Lemma 5. 

Consider hl(xo) = (z,s, 0o). Let p ~ SO(2) be rotation by 0o about R ~-2 , that is, 

p(z, r, O) = (z, r, 0 + 0o). Set gl = P-  1 o h 1. By canonically translating in a small 

coordinate neighborhood of xo, we obtain g2 fixing Xo. We now apply Lemma 8 

to g2, obtaining g2, with g2 canonically isotopic to g2. But g2 satisfies the hypoth- 

esis of Lemma 7 (since g2 was sufficiently small in the radial and R ~-2 coordi- 

nates, with n = ( n l  o 2', #-1  on2 o ;~') and it is canonically isotopic to the identity. 

Composing with p gives a canonical isotopy from gl to p.  Since the isotopy h t 

from h to p may move the origin, we translate by -hi(0) to obtain the isotopy 

in G(n,O). If heSO(2) ,  then h = hi = p,  and gt = g2 = g = id. 

End of proof. 

4. Remarks on the corollaries 

REMARK 1. Theorem 1 remains valid with S n, S n-2 in place of R n, R n-2. 

REMARK 2. For n = 2, we derive the Kneser theorems, namely that 0(2) 
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(respectively, 0(3) is a strong deformation retract of the homeomorphism group 

of R 2 (respectively, $2). See [4]. 

R~MAP, K 3. Let H(n, n - 2 )  denote those homeomorphisms which are invariant 

on R n-2, and fix 0. Then H ( n , n - 2 ) =  G ( n , n - 2 ) x  G ( n - 2 , 0 ) .  This gives 

Theorem 1'. 

THEOREM 1'. n ( n , n - 2 )  deforms in G(n,O) to G ( n - 2 , 0 )  x 0(2) which then 

gives Corollary 3. 

By an isomorphism (in Corollary 3) we mean a homeomorphism between the 

total spaces which preserves fibers and is the identity on the zero section, that is, 

a G(n,O) bundle equivalence as in [7]. 

REMARK 4. Corollary 4 is just the non-canonical version of Theorem 1 with 

Remark 1. 
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