CANONICAL ISOTOPIES IN EUCLIDEAN SPACE[†]

BY

BJORN FRIBERG

ABSTRACT

Let G(n,k) denote the space (with the compact-open topology) of homeomorphisms of \mathbb{R}^n which are fixed on \mathbb{R}^k . Theorem 1: G(n, n-2) deforms in G(n, 0) to O(2), where O(2) is the orthogonal group. Corollary 2: (for n=2) the Kneser theorems. Corollary 3: A Euclidean \mathbb{R}^n bundle ξ^n over $S^m (m \leq \infty)$ which contains an \mathbb{R}^{n-2} subbundle ξ^{n-2} is isomorphic, as a G(n,0) bundle, to a Whitney sum $\xi^{n-2} \oplus \xi^2$. Corollary 4: (n-2) stable homeomorphisms of \mathbb{R}^n or S^n are (n-1) stable, hence stable if orientation preserving.

Let G(n, k) denote the space (with the compact-open topology) of homeomorphisms of \mathbb{R}^n , which are pointwise fixed on \mathbb{R}^k . We prove the following theorem.

THEOREM 1. G(n, n-2) deforms in G(n, 0) to O(2), where O(2) is the orthogonal group.

COROLLARY 2. The Kneser theorems [4] or [6] for n = 2.

COROLLARY 3. A Euclidean \mathbb{R}^n bundle ξ^n over $S^m (m \leq \infty)$ which contains an \mathbb{R}^{n-2} subbundle ξ^{n-2} is isomorphic, as a G(n, 0) bundle, to a Whitney sum $\xi^{n-2} \oplus \xi^2$.

COROLLARY 4. (n-2) stable homeomorphisms of \mathbb{R}^n or \mathbb{S}^n are (n-1) stable, hence stable if orientation preserving.

Corollary 4 has been given by Cernavskii [1] for $n \neq 4$.

1. Definitions and preliminaries

 R^n will denote Euclidean *n*-space; $R^k \subset R^n$ is identified with $R_k \times \{O\} \subset R^k \times R^{n-k} = R^n$. The ball of radius *r* in R^n , centered at *x*, is denoted by $B_r^n(x)$.

Received June 6, 1972 and revised form August 15, 1973

[†] Part of this work represents a portion of the author's Ph.D. thesis at the University of California, Los Angeles, written under the direction of D. S. Gillman and R. C. Kirby.

CANONICAL ISOTOPIES

If x = 0 it is usually omitted. S^1 will denote the unit circle in the plane. G = G(n)denotes the space (with the compact-open topology) of homeomorphisms of R^n . G(n, k) denotes the subspace of those homeomorphisms which are pointwise fixed on R^k . O(2) (SO(2)) will denote the (special) orthogonal group, identified with $\operatorname{id}_{|R_{n-2}} \times O(2)$ in G(n, n-2). A basis for the neighborhoods of the identity (id) in G consists of sets of the form $N(C, \varepsilon) = \{h \mid |h(x) - x| < \varepsilon \text{ all } x \in C\}$, where $\varepsilon > 0$, C is compact in R^n , and $|\cdot|$ denotes the usual norm. It is well known that G is a topological transformation group on R^n , and compositions, inverses, and evaluations are continuous. This will be used without further mention in all proofs. We shall occasionally consider functions from R^k to R^m , which we give the compact open topology. For $f, g: R^k \to R^m$, we define

$$d(f, g)$$
 on $A = \sup\{|f(x) - g(x)| | x \in A\}$ for $A \subset \mathbb{R}^k$.

An isotopy h_t of $h \in G$ is a path in G starting at h. We say that an isotopy h_t , for each $h \in A \subset G$ is *canonical* if the function from $A \times I$ into G defined by $(h, t) \rightarrow h_t$ is continuous, that is, defines a deformation of A in G. Let J denote the integers; A/B the complement of B in A. We make further definitions as we need them.

2. Some useful le nmas

It will be convenient to denote points in \mathbb{R}^n by either rectangular $((z, r_1, r_2) \in \mathbb{R}^{n-2} \times \mathbb{R} \times \mathbb{R})$ or cylindrical $((z, r, \theta) \in \mathbb{R}^{n-2} \times [0, \infty) \times S^1)$ coordinates. For ease of notation we choose a homemorphism $\mu: [-\infty, \infty) \to [0, \infty)$, fixed for $r \ge \frac{1}{2}$. Under this correspondence we may take our cylindrical coordinates in $\mathbb{R}^{n-2} \times [-\infty, \infty) \times S^1$ or, or course in $\mathbb{R}^{n-2} \times [0, \infty) \times S^1$.

For our first lemma we use the following notation. If $f: \mathbb{R}^{n-2} \to [-\infty, \infty)$ is continuous, by C_f we mean the set $\{(z, r, \theta) | r \leq f(z)\}$. If f is the constant function f(z) = r, we simply write C_r . We note that $C_r = \mathbb{R}^{n-2} \times B_{\mu(r)}^2$. If $f_1 < f_2, f_3 < f_4$, by $T_t = T_t(f_1; f_2; f_3; f_4)$ we mean the homeomorphism of \mathbb{R}^n , fixed on C_{f_1} and off C_{f_4} , which takes the ray $\{z\} \times [-\infty, \infty) \times \{\theta\} = [-\infty, \infty)$ onto itself as follows: T_t is fixed on $[-\infty, f_1(z)]$ and $[f_4(z), \infty)$, taking $[f_1(z), f_2(z)]$ linearly onto $[f_1(z), (1-t)f_2(z) + tf_3(z)]$ and $[f_2(z) f_4(z)]$ linearly onto $[(1-t)f_2(z) + tf_3(z), f_4(z)]$. It is readily seen that T_t is continuous in t and f_t , and that it defines an isotopy (of the identity) in G(n, n-2). Let π_1 and π_2 denote projections (in cylindrical coordinates) of \mathbb{R}^n on \mathbb{R}^{n-2} and $[-\infty, \infty)$ or $[0, \infty)$, depending on how we are taking the radial coordinate.

B. FRIBERG

LEMMA 5. Let $h \in G(n, n-2)$. Then h is canonically isotopic in G(n, n-2) to h_4 , with $d(\pi_1 \circ h_4, \pi_1) \leq 2$ on \mathbb{R}^n and $C_{4j-1} \subset h_4(C_{4j}) \subset C_{4j+1}$ for all $j \in J$. Furthermore, if $h \in O(2)$, then $h_t = h$.

PROOF. Let $\phi(z) = \min[0; \sup\{r \mid h(B_{\frac{1}{2}}^{n-2}(z) \times B_{\mu(r)}^2) \subset B_1^{n-2}(z) \times B_{\mu(0)}^2\}]$. Set $h_t = T_t(-\infty; \phi; 0; 1) \circ h \circ T_t^{-1}(-\infty; \phi; 0; 1)$. Then $d(\pi_1 \circ h_1 \circ \pi_1) \leq 1$ on C_0 . h_1 is now canonically isotoped to h_4 in three steps.

Step 1. For each $i = -1, 0, 1, 2, 3, \cdots$ we define $\lambda_i: \mathbb{R}^{n-2} \to \mathbb{R}$ as follows: Set $\lambda_0 = 0, \lambda_{-1}(z) = \max[1; \sup\{\pi_2 \circ h_1(z', 0, \theta) \mid |z'-z| \leq 1\}].$

By induction define:

$$\lambda_{2i+1}(z) = \min[-1 + \lambda_{2i}(z); \inf\{\pi_2 \circ h_1(z', \lambda_{2i}(z'), \theta) \mid |z - z'| \leq 1\}]$$

$$\lambda_{2i+2}(z) = \min[-1 + \lambda_{2i+1}(z); \inf\{\pi_2 \circ h_1^{-1}(z', \lambda_{2i+1}(z'), \theta) \mid |z' - z| \leq 1\}].$$

Thus $1 + \lambda_{i+1} \leq \lambda_i$, with $C_{\lambda_{2j+1}} \subset h_1(C_{\lambda_{2j}}) \subset C_{\lambda_{2j-1}}$ for $j \leq 0$.

Let ψ_t be the isotopy (of the identity) in G(n, n-2) which takes the ray $\{z\} \times [-\infty, \infty) \times \{\theta\} = [-\infty, \infty)$ onto itself. ψ_t is the identity on $[1 + \lambda_{-1}(z), \infty)$, it takes $\{-i\}$ to $\{(1-t)(-i) + t\lambda_i(z)\}$ and it is linear on the segments [-(i+1)-1] and $[1, 1 + \lambda_{-1}(z)]$. By the choice of λ_i, ψ_t varies continuously with h_1 and the isotopy $h_{1+t} = \psi_t^{-1} \circ h_1 \circ \psi_t$ is canonical. Furthermore $d(\pi_1 h_2, \pi_1) \leq 1$ on C_0 , with $C_{2j-1} \subset h_2(C_{2j}) \subset C_{2j+1}$. If $h_1 \in O(2)$ then $\psi_t = \text{id and } h_{1+t} = h_1$.

Step 2. We canonically isotope h_2 to h_3 by the method described in [2, page 85]. Specifically we define α_1 , β , and $\delta_1 \in G(n, n-2)$ by

$$\alpha_1(z,r,\theta) = (z,r-4,\theta) \text{ for } r \leq -7$$
$$= (z,r,\theta) \quad \text{for } r \geq -6,$$

and takes $\{z\} \times [-7, -6] \times \{\theta\}$ linearly onto $\{z\} \times [-11, -6] \times \{\theta\}$.

$$\beta(z, r, \theta) = (z, r-4, \theta)$$

$$\delta_1(z, r, \theta) = (z, r+4, \theta) \text{ for } r \leq -7$$

$$= (z, r, \theta) \text{ for } r \geq -2, \text{ and takes}$$

 $\{z\} \times [-7, -2] \times \{\theta\}$ linearly onto $\{z\} \times [-3, -2] \times \{\theta\}$. Let $\alpha_t(\delta_t)$ be the natural isotopies from the identity to $\alpha_1(\delta_1)$. Set $h'_{2+t} = (\beta \circ h_2) \circ \delta_t \circ (\beta \circ h_2)^{-1} \circ \alpha_t \circ h_2$. This isotopy slides the cylinders $h_2(\dot{C}_{-8})$ near \dot{C}_{-12} , along the natural $\{z\} \times [-\infty, \infty) \times \{\theta\}$ fibers, keeping $h_2(\dot{C}_{-4})$ fixed. (Here (\cdot) means boundary.) It then slides $\alpha_1 \circ h_2(\dot{C}_{-8})$ back along the fibers provided by $\beta \circ h_2$ until $h'_3(\dot{C}_{-8})$ agrees with $h'_3(\dot{C}_{-4}) = h_2(\dot{C}_{-4})$. We note that $h'_{2+t} = h_2$ off C_{-4} , with

 $h'_{3} \circ \beta_{|C_{-4}} = \beta \circ h'_{3|C_{-4}}$. Since the isotopy $h'_{2+t} \neq h_2$ for $h_2 \in O(2)$, we modify it by setting $h_{2+t} = (\mathrm{id}'_t)^{-1}h_{2+t}$. Then $h_3 = h'_3$ and (since the $\alpha_t, \delta_t, \beta$ commute with $h \in O(2)$), $h_{2+t} = h_2$ if $h_2 \in O(2)$. Furthermore, since the image of the fibers $(\{z\} \times R^2) \cap C_0$ under h_2 and $\beta \circ h_2$ are within 1 of $\{z\} \times R^2$, we have that $d(\pi_1 \circ h_3, \pi_1) \leq 2$ on C_{-4} . We also have $C_{4j-1} \subset h_3(C_{4j}) \subset C_{4j+1}$ for $j \leq -1$.

Step 3. We define $h_4 \in G(n, n-2)$ by $h_{4|C_{-s}} = h_{3|C_{-s}}$ and

$$h_{4|C_{k-4}/C_{k-8}} = \beta^{-k} \circ h_{3} \circ \beta^{k}_{|C_{k-4}/C_{k-8}}.$$

Then h_4 maps each annulus C_{k-4}/C_{k-8} the same way that h_3 mapped C_{-4}/C_{-8} . h_3 is canonically isotopic to h_4 (since they agree on C_{-4}) and h_4 satisfies the conclusion of the lemma. End of proof.

The following two lemmas are given in [4] for n = 2. Since the proofs are identical, they are not given here. However, we emphasize that the space of all bounded homeomorphisms of \mathbb{R}^n is *not* contractible, that is, that the M in Lemmas 6 and 7 is necessarily fixed, (refer to [4]).

LEMMA 6. Let M > 0 be given and let $h \in G(n)$ be bounded by M, that is $d(h, id) \leq M$ on \mathbb{R}^n . Then h is canonically isotopic to the identity. Furthermore, if h = id, then $h_t = id$.

LEMMA 7. Let M > 0 be given and let $h \in G(n)$ preserve orientation with $d(\pi \circ h, \pi) \leq M$ on \mathbb{R}^n , where $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ denotes projection on \mathbb{R}^{n-1} . Then h is canonically isotopic to the identity. Furthermore if h = id, then $h_t = id$.

For the next lemma we consider a covering map $\lambda: \mathbb{R}^n \to \mathbb{R}^n/\mathbb{R}^{n-2}$ defined as follows. Let $e: \mathbb{R} \to S^1$ be the standard exponential covering map. We define $\lambda': \mathbb{R}^n = \mathbb{R}^{n-2} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n-2} \times (0, \infty) \times S^1 = \mathbb{R}^n/\mathbb{R}^{n-2}$ by $\lambda'(z, r_1, r_2) = (z, \mu(r_1), e(r_2))$; the domain (range) given in rectangular (cylindrical) coordinates. Here $\mu: \mathbb{R} \to (0, \infty)$ is the homeomorphism defined in the remarks preceding Lemma 5. Thus λ' wraps the strips $\mathbb{R}^{n-2} \times [r_1, r_2] \times \mathbb{R}$ around the thickened annuli $\mathbb{R}^{n-2} \times (B_{\mu(r_2)}/\inf B^2_{\mu(r_1)})$. We note that λ' fixes the half line $\{0\} \times [\frac{1}{2}, \infty)$ $\times \{0\}$, and that $\pi = (\pi_1 \circ \lambda', \mu^{-1} \circ \pi_2 \circ \lambda')$, where π_1, π_2 and π are the projections of \mathbb{R}^n on \mathbb{R}^{n-2} , $(0, \infty)$, and \mathbb{R}^{n-1} given in Lemma 7 and the remarks preceding Lemma 5. λ is now taken to be an approximation to λ' which equals λ' off a small compact neighborhood of $x_0 = (0, 1, 0)$, and which is the identity on a smaller compact neighborhood N of x_0 .

LEMMA 8. Let $h \in G(n, n-2)$ fix $x_0 = (0, 1, 0)$. Then $h_{|R^n/R^{n-2}}$ lifts (uniquely) to $\hat{h} \in G(n)$, with $\hat{h}(x_0) = x_0$. Furthermore h is canonically isotopic to \hat{h} .

B. FRIBERG

PROOF. By standard covering space theory \hat{h} uniquely exists. By the definition of λ , we have that $h = \hat{h}$ on a neighborhood of x_0 , in fact on the component of $N \cap h^{-1}(N)$ containing x_0 . That h is canonically isotopic to \hat{h} now follows from the continuity of $h \to \hat{h}$, the continuity of the function $h \to \operatorname{rad} N \cap h^{-1}(N)$ $= \sup\{r \mid B_r^n(x_0) \subset N \cap h^{-1}(N)\}$, and the following basic observation which is stated without proof as Lemma 9.

LEMMA 9. If $A \subset G(n)$ is such that for every $h \in A$ we have

(i) h = id on a compact neighborhood N_h of x_0 and

(ii) $h \rightarrow rad(N_h)$ is continuous,

then h is canonically isotopic to the identity. Furthermore if h = id, then $h_t = id$.

We give the isotopy as follows. Let $\phi_t \in G(n, 0)$ for $0 \le t < 1$ be defined by $\phi_t(x) = (1-t)x$. Let τ be translation by x_0 . Then

$$h_t = \tau \circ \phi^{-1} \circ (\tau^{-1} \circ h \circ \tau) \circ \phi_t \circ \tau^{-1}, \text{ for } t < 1$$

= id, for $t = 1$.

3. Proof of Theorem 1

Let $h \in G(n, n-2)$ be given. W.l.o.g. assume that h preserves orientation. It suffices to give a canonical isotopy, in G(n, 0), of h into SO(2). By Lemma 5, h is canonically isotopic to h_1 , with h_1 as h_4 in the conclusion of Lemma 5. Consider $h_1(x_0) = (z, s, \theta_0)$. Let $\rho \in SO(2)$ be rotation by θ_0 about \mathbb{R}^{n-2} , that is, $\rho(z, r, \theta) = (z, r, \theta + \theta_0)$. Set $g_1 = \rho^{-1} \circ h_1$. By canonically translating in a small coordinate neighborhood of x_0 , we obtain g_2 fixing x_0 . We now apply Lemma 8 to g_2 , obtaining \hat{g}_2 , with g_2 canonically isotopic to \hat{g}_2 . But \hat{g}_2 satisfies the hypothesis of Lemma 7 (since g_2 was sufficiently small in the radial and \mathbb{R}^{n-2} coordinates, with $\pi = (\pi_1 \circ \lambda', \mu^{-1} \circ \pi_2 \circ \lambda')$ and it is canonically isotopic to the identity. Composing with ρ gives a canonical isotopy from g_1 to ρ . Since the isotopy h_t from h to ρ may move the origin, we translate by $-h_t(0)$ to obtain the isotopy in G(n, 0). If $h \in SO(2)$, then $h = h_1 = \rho$, and $g_1 = g_2 = \hat{g} = id$. End of proof.

4. Remarks on the corollaries

REMARK 1. Theorem 1 remains valid with S^n, S^{n-2} in place of $\mathbb{R}^n, \mathbb{R}^{n-2}$. REMARK 2. For n = 2, we derive the Kneser theorems, namely that O(2) (respectively, O(3) is a strong deformation retract of the homeomorphism group of R^2 (respectively, S^2). See [4].

REMARK 3. Let H(n, n-2) denote those homeomorphisms which are invariant on \mathbb{R}^{n-2} , and fix 0. Then $H(n, n-2) = G(n, n-2) \times G(n-2, 0)$. This gives Theorem 1'.

THEOREM 1'. H(n, n-2) deforms in G(n, 0) to $G(n-2, 0) \times O(2)$ which then gives Corollary 3.

By an isomorphism (in Corollary 3) we mean a homeomorphism between the total spaces which preserves fibers and is the identity on the zero section, that is, a G(n,0) bundle equivalence as in [7].

REMARK 4. Corollary 4 is just the non-canonical version of Theorem 1 with Remark 1.

References

1. A. V. Cernavskii, The K-stability of homeomorphisms and the union of cells, Soviet Math. Dokl. 9 (1968), 729-732.

2. R. D. Edwards and R. C. Kirby, Deformations of spaces of embeddings, Ann. of Math. 93 (1971), 63-88.

3. B. Friberg, Ph. D. thesis, University of California, Los Angeles, 1972.

4. B. Friberg, A topological proof of a theorem of Kneser, Proc. Amer. Math. Soc. 39 (1973), 421-426.

5. J. M. Kister, Microbundles are fiber bundles, Ann. of Math. 80 (1964), 190-199.

6. H. Kneser, Die Deformationassatze der einfach zusammehangenden Flachen, Math. Z. 25 (1962), 362-372.

7. N. Steenrod, The topology of fiber bundles, Princeton University Press, 1951.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SASKATCHEWAN SASKATOON, SASKATCHEWAN, CANADA